Methylation and Transcripts Expression at the Imprinted GNAS Locus in Human Embryonic and Induced Pluripotent Stem Cells and Their Derivatives
نویسندگان
چکیده
Data from the literature indicate that genomic imprint marks are disturbed in human pluripotent stem cells (PSCs). GNAS is an imprinted locus that produces one biallelic (Gsα) and four monoallelic (NESP55, GNAS-AS1, XLsα, and A/B) transcripts due to differential methylation of their promoters (DMR). To document imprinting at the GNAS locus in PSCs, we studied GNAS locus DMR methylation and transcript (NESP55, XLsα, and A/B) expression in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) derived from two human fibroblasts and their progenies. Results showed that (1) methylation at the GNAS locus DMRs is DMR and cell line specific, (2) changes in allelic transcript expression can be independent of a change in allele-specific DNA methylation, and (3) interestingly, methylation at A/B DMR is correlated with A/B transcript expression. These results indicate that these models are valuable to study the mechanisms controlling GNAS methylation, factors involved in transcript expression, and possibly mechanisms involved in the pathophysiology of pseudohypoparathyroidism type 1B.
منابع مشابه
Epigenetic properties and identification of an imprint mark in the Nesp-Gnasxl domain of the mouse Gnas imprinted locus.
The Gnas locus in the mouse is imprinted with a complex arrangement of alternative transcripts defined by promoters with different patterns of monoallelic expression. The Gnas transcript is subject to tissue-specific imprinted expression, Nesp is expressed only from the maternal allele, and Gnasxl is expressed only from the paternal allele. The mechanisms controlling these expression patterns a...
متن کاملLarge-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملAnalysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation
Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...
متن کاملسلولهای بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری
Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...
متن کاملO-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کامل